Inductively-loaded RF MEMS Reconfigurable Filters

نویسندگان

  • Vikram Sekar
  • Kamran Entesari
چکیده

This article presents an inductively loaded radio frequency (RF) microelectromechanical systems (MEMS) reconfigurable filter with spurious suppression implemented using packaged metal-contact switches. Both simulation and measurement results show a two-state, two-pole 5% filter with a tuning range of 17% from 1.06 GHz to 1.23 GHz, an insertion loss of 1.56–2.28 dB and return loss better than 13 dB over the tuning range. The spurious passband response in both states is suppressed below 220 dB. The unloaded Q of the filter changes from 127 to 75 as the filter is tuned from 1.06 GHz to 1.23 GHz. The design and full-wave simulation of a two-bit RF MEMS tunable filter with inductively loaded resonators and monolithic metal-contact MEMS switches is also presented to prove the capability of applying the inductive-loading technique to multibit reconfigurable filters. The simulation results for a two-bit reconfigurable filter show 2.5 times improvement in the tuning range compared with the two-state reconfigurable filter due to lower parasitics associated with monolithic metal-contact MEMS switches in the filter structure. VC 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE 00: 000–000, 2009.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review

In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated w...

متن کامل

Workshops and Short Courses

This workshop focuses on recent advances and challenges associated to the realization of high performance reconfigurable microwave filters. This is an exciting and very challenging topic that is evolving from basic frequency tuneable structures to highly reconfigurable devices capable of keeping a competitive EM performance compared to their fixed counterparts. The first part of the workshop wi...

متن کامل

Design and Fabrication of Rf-mems Switch for V-band Reconfigurable Application

This paper presents a study of RF MEMS switch designed to be integrated in tunable filters for applications from W-frequency band to V-frequency band. Along the whole process, we go into detail of each procedure to present a complete study from design to fabrication and characterization of a RF-MEMS switch. The proposed concepts are validated by experimental results.

متن کامل

RF MEMS, BST, and GaAs Varactor System-Level Response in Complex Modulation Systems

This article presents the response of RF microelectromechanical systems (RF MEMS), barium strontium titanate (BST), and gallium arsenide (GaAs)-based tunable filters and reconfigurable matching networks to a wideband code-division-multiple-access signal centered at 1.95 GHz. The RF MEMS tunable filter and impedance tuner result in very low intermodulation distortion and spectral regrowth compar...

متن کامل

Reconfigurable Multifunctional Antennas

In this work, several reconfigurable antennas are presented and discussed. The antennas to be presented cover a wide range of designs such as fractal antennas, triangular antennas, dipoles and monopoles with variable sleeves. All these antennas make use of MEMS switches, to make them reconfigurable. Some of the challenges that the designer has to face in biasing and integrating these switches w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009